It's not always easy to find the formula you need, and impossible to remember them all, so here's a collection of some I have found useful.
sin A, cos A |
sin2A + cos2A = 1 |
sin2A = (1 - cos 2A)/2 |
sin A = 1 / cosec A & sin A = cos A tan A |
sin (A+B) = sin A cos B + cos A sin B sin (A-B) = sin A cos B - cos A sin B |
sin 2A = 2 sin A cos A |
sin A - sin B = 2 cos (A+B)/2 sin (A-B)/2 sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2 |
sin2A - sin2B = sin (A+B) sin (A-B) |
Write tan θ/2 = t ... then sin θ = 2t / (1 + t2) ... and cos θ = (1 - t2) / (1 + t2) |
sinh x, cosh x, tanh x |
π radians = 180 degrees |
1 radian = 57.3 degrees |
sinh x = (e x - e -x ) / 2 |
cosh x = (e x + e -x ) / 2 |
tanh x = sinh x / cosh x |
cosh2x - sinh2x = 1 |
ex = sinh x + cosh x |
log, ln |
log10 e = 0.43429 |
loge 10 = ln 10 = 2.30259 |
n log x = log xn |
Roots of a quadratic |
If y = a x2 + b x + c then ... |
x = [ -b ± √( b2 - 4 a c)] / 2a (2 roots) |
Stray capacitance |
Capacitance between 2 plates in air is ... |
0.9 pF /sq.cm. /mm separation |
Approximations |
Provided that d <<1 ... |
1 / (1 - d) ≈ 1 + d 1 / (1 + d) ≈ 1 - d |
(1 ± d)n ≈ 1 ± nd |
sin A, cos A |
cos A = 1 / sec A & cos A = sin A / tan A |
cos2A = (1 + cos 2A)/2 |
cos (A+B) = cos A cos B - sin A sin B cos(A-B) = cos A cos B + sin A sin B |
cos 2A = cos2A - sin2A |
cos B - cos A = 2 sin (A+B)/2 sin (A-B)/2 |
1 - sin A = coversin A |
cos2A - sin2B = cos (A+B) cos (A-B) |
Complex numbers where j = √-1 |
(a + jb) = √ [a2 + b2] tan-1(b/a) |
e j θ = cos θ + j sin θ e -j θ = cos θ - j sin θ |
cos θ = (e j θ + e-j θ ) / 2 sin θ = (e j θ - e-j θ ) / 2j |
e jnθ = cos nθ + j sin nθ |
n (cos θ + j sin θ) = cos nθ + j sin nθ |
Geometric progression |
If a series is a, ar, ar2, ar3, then ... |
nth term = a r(n-1) |
Sum of first n terms is S = a (rn - 1) / (r - 1) |
Energy in a capacitor |
If a capacitor C is charged to V, then |
Energy stored (joules): J = C V2 / 2 |
Energy in an inductor |
If an inductor L is carrying I amps, then |
Energy stored (joules): J = L I2 / 2 |
Small angles |
Provided that d (radians) is very small ... |
sin d ≈ d & sinh d ≈ d |
cos d ≈ 1 & cosh d ≈ 1 |
tan d ≈ d & tanh d ≈ d |
tan A |
tan A = sin A / cos A .. & .. cot A = 1 / tan A |
1 + tan2A = sec2A .. & .. 1 + cot2A = cosec2A |
tan2A = (1 - cos 2A) / (1 + cos 2A) |
tan (A+B) = [tan A + tan B] / [1 - tan A tan B] tan (A-B) = [tan A - tan B] / [1 + tan A tan B] |
tan 2A = 2 tan A / (1 - tan2A) tan (A/2) = sin A / (1 + cos A) |
tan A + tan B = sin (A-B) / cos A cos B tan A - tan B = sin (A+B) / cos A cos B |
cot A + cot B = sin (A+B) / sin A sin B cot A - cot B = sin (-A+B) / sin A sin B |
Binomial theorem |
(1 ± x)n = 1 ± nx ± n (n-1) x2/ (1 . 2) ... ... ± n (n-1) (n-2) x3/ (1 . 2 . 3) ... etc |
e |
e = 1 + 1 + 1/(1 . 2) + 1/(1 . 2 . 3) ... ... + 1/(1 . 2 . 3 . 4) ... etc ... = 2.71828 |
ex = 1 + x + x2/(1 . 2) ... ... + x3/(1 . 2 . 3) + x4/(1 . 2 . 3 . 4) ... etc |
Arithmetic progression |
If a series is a, (a+d), (a+2d), (a+3d), then ... |
nth term = a + (n - 1) d |
Sum of first n terms is S = a n + (n - 1) n d / 2 |
Root-mean-square (RMS) |
If a sinewave voltage has a peak value of ± E, then |
Erms = E / √2 |
Mnemonic for π |
How I Need A Drink, Alcoholic Of Course ... |
( π = 3.1415926 ... ) |
Conversions |
One pound (lb) = 454 grams |
One mile = 1,760 yards = 5,280 ≈ 5,000 feet |
One year = 8,760 ≈ 104 hours |
A gallon of water weighs 10 lb. (in UK!) |
One horse-power = 746 watts |
One atmosphere = 14.7 psi = 1013 mb |
One mile per hour = 1.467 ≈ 1.5 feet/sec |